Communications

Bond Dissociation Free Energies of the H-A Bonds in HA²⁻ Dianions

Yongyu Zhao* and Frederick G. Bordwell*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113

Received March 28, 1995

Introduction

Recently a potentially general method to estimate the equilibrium acidities of HA2+ dications in DMSO was devised by combining $pK_{HA^{+}}$ values for radical cations with their oxidation potentials and those of the corresponding A $^{\bullet}$ radicals by eq 1.¹

$$pK_{HA^{2+}} = pK_{HA^{*+}} + 16.8[E_{ox}(A^{*}) - E_{ox}(HA^{*+})]$$
(1)

The repulsive effect of the two positive charges was found to greatly weaken the $H-A^{2+}$ bond toward cleavage (eq 2). For example, the acidity of an N-H bond in the

$$\mathrm{HA}^{2+} \rightleftharpoons \mathrm{H}^{+} + \mathrm{A}^{+} \tag{2}$$

 $[p-PhNHC_6H_4NHPh]^{2+}$ dication was found to be about 43 kcal/mol stronger than that of its parent, p-PhNHC₆H₄-NHPh, and about 13 kcal/mol stronger than that of the corresponding NH radical cation [p-PhNHC₆H₄NHPh].⁺⁺ (Henceforth kcal/mol will be abbreviated as kcal.)

It would be expected, then, that the bond dissociation free energy of the H–A bond in a HA^{2–} dianion, BDE_{HA}^{2-} , to form two negative ions (eq 3) would also be greatly weakened by the repulsive effects of the two negative charges.

$$H - A^{2-} \rightleftharpoons H^{-} + A^{-} \tag{3}$$

The chemistry of dianions has been explored extensively for synthetic purposes,² acid-base equilibria to form dianions have been examined in a number of instances,³ and modes of cleavage of A-B⁻⁻ radical anions have been studied.⁴ But, to the best of our knowledge, no bond dissociation energies of dianions of the type shown in eq 3 have been estimated.

Scheme 1					
HA ²⁻ - e — HA ^{-•}	E _{rd} (HA ^{-•})				
НА е — НА	Erd(HA)				
$HA \longrightarrow H^+ + A^-$	рК _{НА}				
H+ + e 💳 H•	-Erd(H+)				
H• + e H-	-Erd(H*)				
HA2 A' + H-	BDE _{HA} 2-				

Results and Discussion

The bond dissociation free energy of cleavage of a dianion to form a hydride ion and an organic anion in DMSO can be obtained by eq 4, which is based on a thermodynamic cycle (Scheme 1).

 $BDE_{HA2-} =$

$$1.37 pK_{HA} + 23.06[E_{rd}(HA) + E_{rd}(HA^{-})] + C$$
 (4)

The experimental quantities needed to evaluate BDE_{HA}^{2-} by eq 4 are (a) the p K_{HA} value in DMSO of the parent acid, HA, (b) the first and second reduction potentials of the parent acid in DMSO, and (c) the electrode potentials for the (H^+/H^-) and (H^+/H^-) redox couples. The latter redox potentials have been evaluated in DMSO and shown to be equal to -2.48 and -0.55 V, respectively, versus the normal hydrogen electrode, NHE_{aq}.⁵ The sum of the free energies for these two half reactions is then equal to 3.03 V (69.9 kcal) in DMSO when the potentials are related to NHE_{aq} and is equal to 94.8 kcal when they are related to the Fc^+/Fc couple.⁵ The latter value is used for the constant C in eq 4.

The data for estimating BDE_{HA²⁻} values for four weak acids are summarized in Table 1.

The acids in Table 1 were chosen because both their first and second reduction potentials are reversible, which allows good estimates of BDE_{HA²⁻} values, as well as $BDE_{HA^{-}}$ values, to be made. [Although the $E_{ox}(A^{-})$ values used to estimate BDE_{HA} are not reversible, the BDE_{HA} values are believed to be accurate to ± 3 kcal, or better, because of the good general agreement of the BDEs obtained by using eq 5 with literature values.⁶]

$$BDE_{HA} = 1.37 pK_{HA} + 23.1E_{ox}(A^{-}) + 73.3 \text{ kcal}$$
 (5)

The first reduction potentials for acids 1, 2, or 3 are associated with addition of a single electron to the nitro

⁽¹⁾ Zhang, X.-M.; Bordwell, F. G. J. Org. Chem. 1994, 59, 2809-2812.

^{(2) (}a) Stowell, J. C. Carbanions in Organic Synthesis; Wiley-Interscience: New York, 1979; pp 10, 28, 79, 146, 186, 187, 193, 195, 214. (b) Bates, R. B. In Comprehensive Carbanion Chemistry; Buncel, E.; Durst, T., Eds. Elsevier: New York, 1980. (c) Bates, R. B.; Ogle, C. A. Carbanion Chemistry; Springer-Verlag: New York, 1983; pp 50-52.

⁽³⁾ Streitwieser, A., Jr. Acc. Chem. Res. 1984, 17, 353-357, and references cited therein.

⁽⁴⁾ Maslak, P.; Vallombroso, T. M.; Chapman, W. H., Jr.; Narvaez, J. N. Angew. Chem., Int. Ed. Engl. 1994, 33, 73-75.

⁽⁵⁾ Handoo, K. L.; Cheng, J.-P.; Parker, V. D. J. Am. Chem. Soc.

⁽⁶⁾ Bordwell, F. G.; Cheng, J.-P.; Ji, G.-Z.; Satish, A. V.; Zhang, X.(6) Bordwell, F. G.; Cheng, J.-P.; Ji, G.-Z.; Satish, A. V.; Zhang, X.(7) Bordwell, F. G.; Cornforth, F. J. Org. Chem. 1978, 43, 1763-

^{1768.}

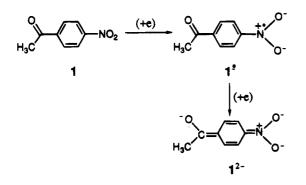
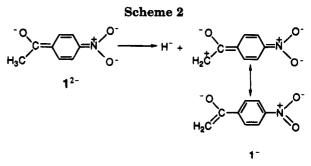

⁽⁸⁾ Bordwell, F. G.; Algrim, D. J. J. Am. Chem. Soc. 1988, 110, 1964-1968.

 Table 1. Bond Dissociation Free Energies for Cleavage of the HA Bonds in Parent Acids, BDE_{HA}, and the Corresponding Radical Anions, BDE_{HA}•-, and Dianions, BDE_{HA}2-, in DMSO


acid	pK_{HA}^{a}	BDE(HA)	$E_{\rm rd}({ m HA})^h$	$(BDE_{HA^{-}})^{i}$	$E_{\rm rd}({\rm HA}^{-})^{f}$	(BDE _{HA} ²⁻) ^j
$p-NO_2C_6H_4COCH_3(1)$	21.8^{b}	89	-1.263	70	-1.864	53
$p-NO_2C_6H_4SO_2CH_3(2)$	26.3^{c}	95	-1.238	77	-1.976	57
$p-NO_2C_6H_4SO_2C_6H_4NH_2-p$ (3)	24.5^{d}	92	-1.262	74	-1.983	53
$C_{60}H_2$ (dihydrobuckminsterfullerene) (4)	4.5^{e}	59¢	-0.88^{e}	56ª	-1.270^{e}	52 ^g

^a In DMSO in pK_{HA} units. ^b Estimated from a Hammett plot.⁷ ^c Estimated from a three-point Hammett plot for 3-CF₃C₆H₄SO₂CH₃, 3,5-(CF₃)₂C₆H₃SO₂CH₃, C₆H₅SO₂CH₃ [$pK_{HA} = 28.87 - 3.30 \sigma$; r = 0.98]. ^d Estimated from a Hammett plot.⁸ ^e Reference 9. ^f Calculated by eq 5 and converted to free energies by subtracting 3.7 kcal. ^g Calculated from data given in reference 9. ^h Reversible potentials measured by cyclic voltammetry under the conditions described in earlier papers and referenced to the ferrocenium/ferrocene couple. ⁱ Calculated using the equation: BDE_{HA}-= 1.37pK_{HA} + 23.1E_{rd}(HA) + 69.6 kcal/mol;¹⁰ these values for homolytic cleavage of the H–A bonds are comparable to those estimated in earlier studies.¹¹ ^j Calculated using eq 4 with C = 94.8 kcal/mol.

group to form the radical anion, and the second reduction potentials are associated with the addition of a second electron to form a dianion, as shown for 1.

The cleavage of the C–H bond in the methyl group of 1^{2^-} in the manner shown in eq 3 will give a hydride ion and anion 1⁻ (Scheme 2). The data in Table 1 provides information that allows an estimate of the BDE_{HA²⁻} value for this bond cleavage to be made (53 kcal) and allow estimates for comparisons with the HA⁻ bond cleavage of the corresponding radical anion, 1⁻ (HA⁻⁻ \rightarrow H[•] + A⁻; 70 kcal) and with the homolytic cleavage of the C–H bond in 1 (HA \rightarrow H[•] + A[•]; 89 kcal). The bond dissociation energies for comparable C–H bond cleavages in 2 and 3 and their HA^{•-} and HA²⁻ derivatives are not greatly different from those for 1, 1^{•-}, and 1²⁻, which is not

surprising since the structures are not greatly different. It is surprising to find, however, that the BDE_{HA²}-value estimated for the cleavage of a C–H bond in a dianion derived from a very different structural type, namely, dihydrobuckminsterfullerene (4),⁹ i.e., $C_{60}H_2^{2-} \rightarrow H^- + C_{60}H^-$, is remarkably similar (52 kcal) to those estimated for the dianions derived from 1–3. The BDE_{HA} and BDE_{HA}-values for 4 and 4^{•-} are much smaller, however, than those for 1–3 and their radical anions (Table 1).

Acknowledgment. This research was sponsored by a grant from the National Science Foundation.

JO950582G

(9) Niyazmbelov, M. E.; Evans, D. H.; Lerke, S. A.; Cahill, D. A.; Henderson, C. C. J. Phys. Chem. **1994**, 98, 13093-13098. The data were measured in 67% DMSO 33% toluene.

(10) Parker, V. D.; Cheng, J.-P.; Handoo, K. L. Acta. Chem. Scand. **1993**, 47, 1144–1145.

(11) Bordwell, F. G.; Zhao, Y. J. Org. Chem. 1995, submitted.